2023-2024學(xué)年廣東省廣州市增城區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/5 5:0:2
一、選擇題。(本大題共10小題,每小題3分,滿(mǎn)分30分。在每小題給出的四個(gè)選項(xiàng)中,有一項(xiàng)是符合題目要求的)
-
1.下列圖形中,是中心對(duì)稱(chēng)圖形的是( )
組卷:507引用:26難度:0.8 -
2.拋物線(xiàn)y=(x-1)2-3的頂點(diǎn)坐標(biāo)是( ?。?/h2>
組卷:1190引用:15難度:0.9 -
3.已知⊙O的半徑為5,直線(xiàn)l是⊙O的切線(xiàn),則點(diǎn)O到直線(xiàn)l的距離是( ?。?/h2>
組卷:1455引用:68難度:0.9 -
4.如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,將△ABC繞點(diǎn)C按逆時(shí)方向旋轉(zhuǎn)得到△A'B'C,此時(shí)點(diǎn)A'恰好在邊AB上,則點(diǎn)AA′的長(zhǎng)度為( ?。?/h2>
組卷:122引用:3難度:0.7 -
5.一元二次方程x2-2x-7=0用配方法可變形為( )
組卷:433引用:22難度:0.9 -
6.若二次函數(shù)y=x2+4x+n的圖象與x軸只有一個(gè)公共點(diǎn),則實(shí)數(shù)n的值是( )
組卷:780引用:10難度:0.8 -
7.已知圓錐底面圓的半徑為3,母線(xiàn)長(zhǎng)為4,則這個(gè)圓錐的側(cè)面積是( ?。?/h2>
組卷:162引用:2難度:0.6 -
8.已知點(diǎn)A(1,y1),B(2,y2),C(-3,y3)都在二次函數(shù)y=-2x2+4的圖象上,則( ?。?/h2>
組卷:506引用:8難度:0.6
三、解答題。(本大題有9小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。)
-
24.△ABC中,AB=AC,∠BAC=α(60°<α<180°).點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),將線(xiàn)段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到線(xiàn)段AE,連接BE.
(1)如圖1,求證:△ADC≌△AEB;
(2)如圖2,四邊形AEBD是⊙O的內(nèi)接四邊形,若AC是⊙O的切線(xiàn),當(dāng)AD=4時(shí),求CD的值;
(3)如圖3,已知α=120°,BC=12,點(diǎn)F在邊BC上且CF=4,若點(diǎn)P是△ABD的外接圓的圓心,連接FP,求FP的最小值.
?組卷:151引用:3難度:0.2 -
25.已知,如圖,拋物線(xiàn)y=ax2+bx-8與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OA=6,OB=
,點(diǎn)P為x軸下方的拋物線(xiàn)上一點(diǎn).43
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)連接AP、CP,求四邊形AOCP面積的最大值;
(3)是否存在這樣的點(diǎn)P,使得點(diǎn)P到AB和AC兩邊的距離相等,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.組卷:2494引用:9難度:0.3