人教五四新版八年級(上)中考題單元試卷:第20章 軸對稱(09)
發(fā)布:2024/4/20 14:35:0
一、選擇題(共11小題)
-
1.如圖,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE最小,則這個最小值為( ?。?/h2>
組卷:2412引用:57難度:0.9 -
2.如圖,在矩形ABCD中,AB=10,BC=5.若點M、N分別是線段AC,AB上的兩個動點,則BM+MN的最小值為( ?。?/h2>
組卷:4527引用:55難度:0.9 -
3.如圖,四邊形ABCD中,∠C=50°,∠B=∠D=90°,E、F分別是BC、DC上的點,當(dāng)△AEF的周長最小時,∠EAF的度數(shù)為( ?。?/h2>
組卷:10675引用:73難度:0.9 -
4.如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是( )
組卷:13134引用:80難度:0.9 -
5.如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:①作點B關(guān)于直線l的對稱點B′;②連接AB′與直線l相交于點C,則點C為所求作的點.在解決這個問題時沒有運用到的知識或方法是( )
組卷:2508引用:54難度:0.9 -
6.如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的動點,E是BC上的動點,則AE+DE的最小值為( ?。?/h2>
組卷:1091引用:42難度:0.9 -
7.如圖,A和B兩地在一條河的兩岸,現(xiàn)要在河上造一座橋MN,使從A到B的路徑AMNB最短的是(假定河的兩岸是平行直線,橋要與河岸垂直)( ?。?/h2>
組卷:1709引用:41難度:0.9 -
8.如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是( ?。?/h2>
組卷:2991引用:89難度:0.9 -
9.如圖,MN是⊙O的直徑,點A是半圓上的三等分點,點B是劣弧AN的中點,點P是直徑MN上一動點.若MN=2
,則PA+PB的最小值是( ?。?/h2>2組卷:462引用:51難度:0.7 -
10.如圖,MN是半徑為1的⊙O的直徑,點A在⊙O上,∠AMN=30°,點B為劣弧AN的中點.P是直徑MN上一動點,則PA+PB的最小值為( ?。?/h2>
組卷:1667引用:47難度:0.7
三、解答題(共2小題)
-
29.問題背景:
如圖(a),點A、B在直線l的同側(cè),要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關(guān)于l的對稱點B′,連接AB′與直線l交于點C,則點C即為所求.
(1)實踐運用:
如圖(b),已知,⊙O的直徑CD為4,點A在⊙O上,∠ACD=30°,B為弧AD的中點,P為直徑CD上一動點,則BP+AP的最小值為.
(2)知識拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點D,E、F分別是線段AD和AB上的動點,求BE+EF的最小值,并寫出解答過程.組卷:357引用:41難度:0.5 -
30.如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點,點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時,求點P的坐標(biāo).組卷:1333引用:51難度:0.3