2022年江蘇省徐州七中高考數(shù)學(xué)考前模擬試卷(一)
發(fā)布:2024/12/5 6:30:2
一、選擇題(每小題5分).
-
1.已知復(fù)數(shù)z-2
=1+3i,其中i是虛數(shù)單位,則z=( ?。?/h2>z組卷:111引用:5難度:0.8 -
2.集合A={x|x2>2x},B={-2,-1,0,1,2},則(?RA)∩B=( ?。?/h2>
組卷:179引用:1難度:0.8 -
3.已知
,且sinα=13,則α∈(π2,π)=( ?。?/h2>sin2αcos2α+1組卷:219引用:2難度:0.7 -
4.北斗三號(hào)全球衛(wèi)星導(dǎo)航系統(tǒng)是我國(guó)航天事業(yè)的重要成果.在衛(wèi)星導(dǎo)航系統(tǒng)中,地球靜止同步軌道衛(wèi)星的軌道位于地球赤道所在平面,軌道高度為36000km(軌道高度是指衛(wèi)星到地球表面的距離).將地球看作是一個(gè)球心為O,半徑r為6400km的球,其上點(diǎn)A的緯度是指OA與赤道平面所成角的度數(shù).地球表面上能直接觀測(cè)到的一顆地球靜止同步軌道衛(wèi)星點(diǎn)的緯度最大值為α,該衛(wèi)星信號(hào)覆蓋地球表面的表面積S=2πr2(1-cosα)(單位:km2),則S占地球表面積的百分比約為( ?。?/h2>
組卷:2776引用:10難度:0.7 -
5.已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,過(guò)拋物線(xiàn)上一點(diǎn)P作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為Q,若
,則|PF|=( ?。?/h2>∠PFQ=π3組卷:137引用:2難度:0.6 -
6.設(shè)a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,若B=C≠A,且a(b2+c2-a2)=b2c,則A=( ?。?/h2>
組卷:339引用:4難度:0.7 -
7.我國(guó)著名數(shù)學(xué)家華羅庚說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休.”函數(shù)
的部分圖象大致為( ?。?/h2>f(x)=x(e-x+ex)2+cosx組卷:736引用:10難度:0.9
四、解答題
-
21.已知P是離心率為
的橢圓22上任意一點(diǎn),且P到兩個(gè)焦點(diǎn)的距離之和為4.C:x2a2+y2b2=1(a>b>0)
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)A是橢圓C的左頂點(diǎn),直線(xiàn)AP交y軸于點(diǎn)D,E為線(xiàn)段AP的中點(diǎn),在x軸上是否存在定點(diǎn)M,使得直線(xiàn)DM與OE交于Q,且點(diǎn)Q在一個(gè)定圓上,若存在,求點(diǎn)M的坐標(biāo)與該圓的方程;若不存在,說(shuō)明理由.組卷:181引用:6難度:0.6 -
22.已知函數(shù)f(x)=ax-xex(a>0).
(1)求(0,f(0))處的切線(xiàn)方程;
(2)求證:f(x)有且僅有一個(gè)極值點(diǎn);
(3)若存在實(shí)數(shù)a使f(x)≤a+b對(duì)任意的x∈R恒成立,求實(shí)數(shù)b的取值范圍.組卷:320引用:3難度:0.2