2022-2023學(xué)年安徽省阜陽一中高二(下)第一次月考數(shù)學(xué)試卷
發(fā)布:2024/11/19 9:30:2
一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
-
1.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,8a2+a5=0,則
等于( )S5S2組卷:1743引用:116難度:0.9 -
2.記等比數(shù)列{an}的前n項(xiàng)和為Sn,若S4=3,S8=9,則S12=( )
組卷:1024引用:13難度:0.6 -
3.已知數(shù)列{an}的通項(xiàng)公式為an=2n+n,前n項(xiàng)和為Sn,則S6等于( ?。?/h2>
組卷:100引用:1難度:0.8 -
4.求值:1-3+5-7+9-11+…+2021-2023等于( ?。?/h2>
組卷:28引用:1難度:0.7 -
5.在等差數(shù)列{an}中,Sn是其前n項(xiàng)和,且S2011=S2018,Sk=S2006,則正整數(shù)k為( )
組卷:64引用:1難度:0.8 -
6.在等比數(shù)列{an}中,a1+a2+a3+a4+a5+a6=
,a3a4=-158,則98=( ?。?/h2>1a1+1a2+1a3+1a4+1a5+1a6組卷:383引用:2難度:0.7 -
7.已知數(shù)列{an}滿足an=n2+λn(n∈N*),若對(duì)任意的n∈N*,都有an<an+1恒成立,則實(shí)數(shù)λ的取值范圍是( ?。?/h2>
組卷:62引用:4難度:0.8
四、解答題:本題共6小題,共70分。解答應(yīng)寫出必要的文字說明、證明過程或演算步驟。
-
21.某國采用養(yǎng)老儲(chǔ)備金制度,公民在就業(yè)的第一年就交納養(yǎng)老儲(chǔ)備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲(chǔ)備金數(shù)目a1,a2,…是一個(gè)公差為d的等差數(shù)列.與此同時(shí),國家給予優(yōu)惠的計(jì)息政府,不僅采用固定利率,而且計(jì)算復(fù)利.這就是說,如果固定年利率為r(r>0),那么,在第n年末,第一年所交納的儲(chǔ)備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲(chǔ)備金就變成a2(1+r)n-2,….以Tn表示到第n年末所累計(jì)的儲(chǔ)備金總額.
(Ⅰ)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(Ⅱ)求證Tn=An+Bn,其中{An}是一個(gè)等比數(shù)列,{Bn}是一個(gè)等差數(shù)列.組卷:26引用:5難度:0.3 -
22.在各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=a且an+1=
+an2.2an
(1)當(dāng)a3=2時(shí),求a1與a4的值;
(2)求證:當(dāng)n≥2時(shí),an+1≤an.組卷:43引用:1難度:0.5