菁于教,優(yōu)于學
旗下產(chǎn)品
校本題庫
菁優(yōu)備課
開放平臺
菁優(yōu)測評
菁優(yōu)公式
小優(yōu)同學
菁優(yōu)App
數(shù)字備考
充值服務
試卷征集
申請校本題庫
智能組卷
錯題庫
五大核心功能
組卷功能
資源共享
在線作業(yè)
在線測評
試卷加工
游客模式
登錄
試題
試題
試卷
課件
試卷征集
加入會員
操作視頻
初中數(shù)學
小學
數(shù)學
語文
英語
奧數(shù)
科學
道德與法治
初中
數(shù)學
物理
化學
生物
地理
語文
英語
道德與法治
歷史
科學
信息技術
高中
數(shù)學
物理
化學
生物
地理
語文
英語
政治
歷史
信息
通用
中職
數(shù)學
語文
英語
推薦
名校
中考
競賽
期末
期中
月考
單元
同步
開學
假期
|
組卷
測評
備課
當前位置:
試卷中心
>
試卷詳情
人教五四新版九年級(上)中考題單元試卷:第28章 二次函數(shù)(24)
發(fā)布:2024/4/20 14:35:0
一、解答題(共30小題)
1.
已知:如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點C,A(1,-1),B(3,-1),動點P從點O出發(fā),沿著x軸正方向以每秒2個單位長度的速度移動.過點P作PQ垂直于直線OA,垂足為點Q,設點P移動的時間t秒(0<t<2),△OPQ與四邊形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線的解析式,并確定頂點M的坐標;
(2)用含t的代數(shù)式表示點P、點Q的坐標;
(3)如果將△OPQ繞著點P按逆時針方向旋轉90°,是否存在t,使得△OPQ的頂點O或頂點Q在拋物線上?若存在,請求出t的值;若不存在,請說明理由;
(4)求出S與t的函數(shù)關系式.
組卷:3860
引用:61
難度:0.1
解析
2.
如圖,已知拋物線y=ax
2
+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為直線x=1.
(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.
組卷:3579
引用:62
難度:0.1
解析
3.
如圖,已知拋物線y=
k
8
(x+2)(x-4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線y=-
3
3
x+b與拋物線的另一交點為D.
(1)若點D的橫坐標為-5,求拋物線的函數(shù)表達式;
(2)若在第一象限內(nèi)的拋物線上有點P,使得以A,B,P為頂點的三角形與△ABC相似,求k的值;
(3)在(1)的條件下,設F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當點F的坐標是多少時,點M在整個運動過程中用時最少?
組卷:9515
引用:70
難度:0.1
解析
4.
如圖,在平面直角坐標系中,拋物線y=ax
2
+bx-3(a≠0)與x軸交于點A(-2,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點K,使S
△CBK
:S
△PBQ
=5:2,求K點坐標.
組卷:5618
引用:69
難度:0.1
解析
5.
如圖,拋物線y=ax
2
+bx+c經(jīng)過A(-3,0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標;如果不存在,說明理由.
組卷:4884
引用:62
難度:0.1
解析
6.
如圖,已知拋物線y=x
2
+bx+c的頂點坐標為M(0,-1),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)判斷△MAB的形狀,并說明理由;
(3)過原點的任意直線(不與y軸重合)交拋物線于C、D兩點,連接MC,MD,試判斷MC、MD是否垂直,并說明理由.
組卷:2327
引用:56
難度:0.1
解析
7.
如圖,拋物線y=ax
2
+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(-2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.
組卷:5299
引用:67
難度:0.1
解析
8.
如圖,在平面直角坐標系xOy中,頂點為M的拋物線是由拋物線y=x
2
-3向右平移一個單位后得到的,它與y軸負半軸交于點A,點B在該拋物線上,且橫坐標為3.
(1)求點M、A、B坐標;
(2)連接AB、AM、BM,求∠ABM的正切值;
(3)點P是頂點為M的拋物線上一點,且位于對稱軸的右側,設PO與x軸正半軸的夾角為α,當α=∠ABM時,求P點坐標.
組卷:4676
引用:54
難度:0.1
解析
9.
如圖①,直線l:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點,將△AOB繞點O逆時針旋轉90°得到△COD,過點A,B,D的拋物線P叫做l的關聯(lián)拋物線,而l叫做P的關聯(lián)直線.
(1)若l:y=-2x+2,則P表示的函數(shù)解析式為
;若P:y=-x
2
-3x+4,則l表示的函數(shù)解析式為
.
(2)求P的對稱軸(用含m,n的代數(shù)式表示);
(3)如圖②,若l:y=-2x+4,P的對稱軸與CD相交于點E,點F在l上,點Q在P的對稱軸上.當以點C,E,Q,F(xiàn)為頂點的四邊形是以CE為一邊的平行四邊形時,求點Q的坐標;
(4)如圖③,若l:y=mx-4m,G為AB中點,H為CD中點,連接GH,M為GH中點,連接OM.若OM=
10
,直接寫出l,P表示的函數(shù)解析式.
組卷:4014
引用:56
難度:0.1
解析
10.
如圖,在平面直角坐標系中,已知點A的坐標是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.
(1)求拋物線的解析式;
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;
(3)過動點P作PE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.
組卷:5173
引用:61
難度:0.1
解析
當前模式為游客模式,
立即登錄
查看試卷全部內(nèi)容及下載
一、解答題(共30小題)
29.
如圖,拋物線y=x
2
-2mx(m>0)與x軸的另一個交點為A,過P(1,-m)作PM⊥x軸于點M,交拋物線于點B.點B關于拋物線對稱軸的對稱點為C.
(1)若m=2,求點A和點C的坐標;
(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;
(3)在坐標軸上是否存在點E,使得△PEC是以P為直角頂點的等腰直角三角形?若存在,求出點E的坐標;若不存在,請說明理由.
組卷:2115
引用:53
難度:0.1
解析
30.
如圖,拋物線y=-
1
4
x
2
+
3
2
x-2交x軸于A,B兩點(點A在點B的左側),交y軸于點C,分別過點B,C作y軸,x軸的平行線,兩平行線交于點D,將△BDC繞點C逆時針旋轉,使點D旋轉到y(tǒng)軸上得到△FEC,連接BF.
(1)求點B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點P,使得以點P,A,B為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.
組卷:2229
引用:51
難度:0.1
解析
0/60
進入組卷
0/20
進入試卷籃
布置作業(yè)
發(fā)布測評
反向細目表
平行組卷
下載答題卡
試卷分析
在線訓練
收藏試卷
充值會員,資源免費下載
商務合作
服務條款
走進菁優(yōu)
幫助中心
兼職招聘
意見反饋
深圳市菁優(yōu)智慧教育股份有限公司
粵ICP備10006842號
公網(wǎng)安備44030502001846號
©2010-2024 jyeoo.com 版權所有
深圳市市場監(jiān)管
主體身份認證
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司
|
應用名稱:菁優(yōu)網(wǎng)
|
應用版本:5.0.7
|
隱私協(xié)議
|
第三方SDK
|
用戶服務條款
廣播電視節(jié)目制作經(jīng)營許可證
|
出版物經(jīng)營許可證
|
網(wǎng)站地圖
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正