試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年貴州省黔西南州安龍四中高二(下)期中數(shù)學試卷

發(fā)布:2024/7/6 8:0:9

一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。

  • 1.設集合A={x|0≤x+1≤3},B={x|4x+3>0},則A∩B=( ?。?/h2>

    組卷:83引用:5難度:0.7
  • 2.若復數(shù)z滿足(1-i)z=2+3i,則復數(shù)z的實部與虛部之和為( ?。?/h2>

    組卷:46引用:9難度:0.9
  • 3.某汽車的路程函數(shù)是s=2t3-
    1
    2
    gt2(g=10m/s2),則當t=2s時,汽車的加速度是( ?。?/h2>

    組卷:325引用:3難度:0.9
  • 4.設函數(shù)f(x)=cosx,則f(x)在
    π
    2
    ,
    0
    處的切線方程為( ?。?/h2>

    組卷:78引用:6難度:0.7
  • 5.某試驗分5個程序,其中程序B、C實施時必須相鄰,則試驗的實施方法有(  )

    組卷:42引用:3難度:0.9
  • 6.若過雙曲線
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    (a>0,b>0)的一個焦點作雙曲線的一條漸近線的垂線交y軸于點(0,2c)(c為雙曲線的半焦距),則此雙曲線的離心率是( ?。?/h2>

    組卷:91引用:7難度:0.6
  • 7.已知點M(-1,1,-2),平面π過原點O,且垂直于向量
    n
    =
    1
    ,-
    2
    ,
    2
    ,則點M到平面π的距離是( ?。?/h2>

    組卷:25引用:3難度:0.5

四、解答題:本題共6小題,共70分。解答應寫出文字說明、證明過程或演算步驟。

  • 21.設橢圓
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的左焦點為F,上頂點為B,離心率為
    3
    3
    ,O是坐標原點,且
    |
    OB
    |
    ?
    |
    FB
    |
    =
    6

    (1)求橢圓C的方程;
    (2)若直線l:y=kx與橢圓C在第一象限內(nèi)的交點為P,|PB|=|PO|,直線BF與直線l的交點為Q,求△BPQ的面積.

    組卷:43引用:5難度:0.5
  • 22.已知函數(shù)f(x)=ex+2x2-3x.
    (1)求證:函數(shù)f(x)在區(qū)間[0,1]上存在唯一的極值點;
    (2)當
    x
    1
    2
    時,若關于x的不等式
    f
    x
    5
    2
    x
    2
    +
    a
    -
    3
    x
    +
    1
    恒成立,試求實數(shù)a的取值范圍.

    組卷:21引用:3難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正