2023-2024學年江西省宜春市豐城九中高二(上)開學數(shù)學試卷
發(fā)布:2024/8/30 2:0:8
一、選擇題(本大題共8個小題,每小題5分,共40分)
-
1.已知復數(shù)z滿足(4+3i)z=1+2i,則|z|=( ?。?/h2>
A. 15B. 55C. 5D.5 組卷:42引用:4難度:0.8 -
2.若
且a=(1,2),b=(x,3),則x=( ?。?/h2>a?b=4A.-2 B. -12C. 12D.10 組卷:191引用:7難度:0.8 -
3.已知角α的頂點在坐標原點,始邊在x軸非負半軸上,點P(-6,-8)為角α終邊上一點,則cosα=( )
A. -45B. 34C. 35D. -35組卷:199引用:5難度:0.7 -
4.若
,則sin(π5+α)=23=( )cos(7π10+α)A. -23B. 23C. -53D. 53組卷:222引用:4難度:0.7 -
5.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=ccosB,則△ABC為( ?。?/h2>
A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形 組卷:86引用:7難度:0.9 -
6.
的值為( ?。?/h2>1+tan15°1-tan15°A. 6-2B. 33C. 3D. 6組卷:409引用:3難度:0.9 -
7.已知函數(shù)f(x)=cos2x-sin2x,則( )
A.f(x)在 上單調(diào)遞減(-π2,-π6)B.f(x)在 上單調(diào)遞減(-π4,π12)C.f(x)在 上單調(diào)遞減(0,π3)D.f(x)在 上單調(diào)遞減(π4,7π12)組卷:168引用:2難度:0.7
四、解答題(本大題共6個小題,17題10分其余每小題10分,共70分)
-
21.如圖,在正六棱錐S-ABCDEF中,O為底面中心,SO=8,OB=4.
(1)若M,N分別是棱SB,SC的中點,證明:MN∥平面SAD;
(2)若該正六棱錐的頂點都在球Q的表面上,求球Q的表面積和體積.組卷:90引用:3難度:0.6 -
22.陽馬,中國古代算數(shù)中的一種幾何形體,是底面為長方形,兩個三角面與底面垂直的四棱錐體.如圖,四棱錐P-ABCD就是陽馬結(jié)構(gòu),PD⊥平面ABCD,且PD=AB=AD=2,連接BD,E,F(xiàn)分別是PC,BD的中點.
(1)證明:EF∥平面PAD;
(2)求平面EBD與平面CBD所成二面角的正切值.組卷:83引用:2難度:0.4