2023-2024學(xué)年重慶市部分學(xué)校高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/14 1:0:1
一、單選題(本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
-
1.過(guò)A(1,-3),B(-2,0)兩點(diǎn)的直線的傾斜角是( ?。?/h2>
組卷:440引用:14難度:0.7 -
2.已知點(diǎn)A(1,1),且F是橢圓
的左焦點(diǎn),P是橢圓上任意一點(diǎn),則|PF|+|PA|的最小值是( ?。?/h2>x24+y23=1組卷:334引用:5難度:0.7 -
3.過(guò)點(diǎn)(2,4)作直線與拋物線y2=8x只有一個(gè)公共點(diǎn),這樣的直線有( )
組卷:222引用:20難度:0.9 -
4.三棱錐P-ABC中,PA⊥平面ABC,△ABC為直角三角形,AB⊥BC,AB=BC=1,PA=2,則三棱錐P-ABC的外接球的表面積為( ?。?/h2>
組卷:145引用:3難度:0.6 -
5.已知雙曲線
的離心率為E:x2m+4-y2m=1,則雙曲線E的兩條漸近線的夾角為( ?。?/h2>233組卷:104引用:2難度:0.7 -
6.已知橢圓
,則以點(diǎn)x216+y29=1為中點(diǎn)的弦所在的直線方程為( ?。?/h2>(2,32)組卷:564引用:11難度:0.9 -
7.已知點(diǎn)M(0,4),點(diǎn)P在拋物線x2=8y上運(yùn)動(dòng),點(diǎn)Q在圓x2+(y-2)2=1上運(yùn)動(dòng),則
的最小值為( ?。?/h2>|PM|2PQ組卷:102引用:5難度:0.7
四、解答題(本題共6小題,共70分,其中第17題10分,其它每題12分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.)
-
21.如圖1,在平面四邊形PDCB中,PD∥BC,BA⊥PD,PA=AB=BC=2,AD=1.將△PAB沿BA翻折到△SAB的位置,使得平面SAB⊥平面ABCD,如圖2所示.
(Ⅰ)設(shè)平面SDC與平面SAB的交線為l,求證:BC⊥l;
(Ⅱ)點(diǎn)Q在線段SC上(點(diǎn)Q不與端點(diǎn)重合),平面QBD與平面BCD夾角的余弦值為,求線段BQ的長(zhǎng).66組卷:113引用:2難度:0.6 -
22.已知雙曲線C經(jīng)過(guò)點(diǎn)
,它的兩條漸近線分別為x+P(3,2)y=0和x-3y=0.3
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)設(shè)雙曲線C的左、右焦點(diǎn)分別為F1、F2,過(guò)左焦點(diǎn)F1作直線l交雙曲線的左支于A、B兩點(diǎn),求△ABF2周長(zhǎng)的取值范圍.組卷:119引用:2難度:0.5