我們可以通過類比聯(lián)想、引申拓展研究典型題目,以達(dá)到觸類旁通的目的.下面是一個(gè)案例,請補(bǔ)充完整.
原題:如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
如圖1,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,易知△ADG≌△ABE,
∴AG=AE,BE=DG,∠DAG=∠BAE,∠ADG=∠ABE.
∵四邊形ABCD是正方形,∠EAF=45°,
∴∠FDG=∠ADF+∠ADG=180°,點(diǎn)F,D,G共線;
∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=45°=∠EAF.
易得△AEF≌△AGF△AGF( SASSAS),得EF=GF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E,F(xiàn)分別在邊BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 ∠B+∠D=180°∠B+∠D=180°時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°.
猜想BD,DE,EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.
?
【考點(diǎn)】四邊形綜合題.
【答案】△AGF;SAS;∠B+∠D=180°
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:103引用:1難度:0.3
相似題
-
1.如圖,在菱形ABCD中,AB=10,sinB=
,點(diǎn)E從點(diǎn)B出發(fā)沿折線B-C-D向終點(diǎn)D運(yùn)動(dòng).過點(diǎn)E作點(diǎn)E所在的邊(BC或CD)的垂線,交菱形其它的邊于點(diǎn)F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點(diǎn)G在AC上.求證:FA=FG.
(2)若EF=FG,當(dāng)EF過AC中點(diǎn)時(shí),求AG的長.
(3)已知FG=8,設(shè)點(diǎn)E的運(yùn)動(dòng)路程為s.當(dāng)s滿足什么條件時(shí),以G,C,H為頂點(diǎn)的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:2008引用:3難度:0.1 -
2.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對角線BD交于點(diǎn)E,連接EC.55
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當(dāng)點(diǎn)P在線段BC的延長線上時(shí),若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1 -
3.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點(diǎn)A作對角線BD的平行線與邊CD的延長線相交于點(diǎn)E.P為邊BD上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點(diǎn)P的運(yùn)動(dòng)過程中,試探究下列兩個(gè)式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個(gè)定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2