【概念呈現(xiàn)】:當一個凸四邊形的一條對角線把原四邊形分成兩個三角形.若其中有一個三角形是等腰直角三角形,則把這條對角線叫做這個四邊形的“等腰直角線”,把這個四邊形叫做“等腰直角四邊形”;當一個凸四邊形的一條對角線把原四邊形分成兩個三角形,若其中一個三角形是等腰直角三角形,另一個三角形是等腰三角形,則把這條對角線叫做這個四邊形的“真等腰直角線”,把這個四邊形叫做“真等腰直角四邊形”.
(1)【概念理解】:如圖①,若AD=1,AD=DB=DC,BC=2,則四邊形ABCD 是是(填“是”或“否”)真等腰直角四邊形;
(2)【性質(zhì)應用】:如圖②,如果四邊形ABCD是真等腰直角四邊形,且∠BDC=90°,對角線BD是這個四邊形的真等腰直角線,當AD=5,AB=4時,BC2=50或3250或32;
(3)【深度理解】:如圖③,四邊形ABCD與四邊形ABDE都是等腰直角四邊形,且∠BDC=90°,∠ADE=90°,BD>AD>AB,對角線BD、AD分別是這兩個四邊形的等腰直角線,試說明AC與BE的數(shù)量關系,并說明理由.
BC
=
2
【考點】四邊形綜合題.
【答案】是;50或32
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/9 9:0:1組卷:112引用:1難度:0.2
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1464引用:7難度:0.3 -
2.如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.發(fā)布:2024/12/23 18:0:1組卷:2031引用:13難度:0.1 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~