試卷征集
加入會(huì)員
操作視頻

菁優(yōu)網(wǎng)在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸正半軸上,點(diǎn)Pn在x軸上,其橫坐標(biāo)為xn,且{xn}是首項(xiàng)為1、公比為2的等比數(shù)列,記∠PnAPn+1n,n∈N*
(1)若
θ
3
=
arctan
1
3
,求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)A的坐標(biāo)為(0,8
2
),求θn的最大值及相應(yīng)n的值.

【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:713引用:19難度:0.3
相似題
  • 1.黎曼函數(shù)是一個(gè)特殊的函數(shù),由德國(guó)著名的數(shù)學(xué)家黎曼發(fā)現(xiàn)并提出,在高等數(shù)學(xué)中有著廣泛應(yīng)用,其定義為:x∈[0,1]時(shí),
    R
    x
    =
    1
    q
    x
    =
    p
    q
    p
    ,
    q
    N
    +
    ,
    p
    q
    為既約真分?jǐn)?shù)
    0
    x
    =
    0
    ,
    1
    0
    1
    內(nèi)的無(wú)理數(shù)
    .若數(shù)列
    a
    n
    =
    R
    n
    -
    1
    n
    ,
    n
    N
    +
    ,則下列結(jié)論:①R(x)的函數(shù)圖像關(guān)于直線
    x
    =
    1
    2
    對(duì)稱;
    a
    n
    =
    1
    n
    ;
    ③an+1<an;
    n
    i
    =
    1
    a
    i
    ln
    n
    +
    1
    2
    ;
    n
    i
    =
    1
    a
    i
    a
    i
    +
    1
    1
    2

    其中正確的是( ?。?/h2>

    發(fā)布:2024/12/20 7:0:1組卷:63引用:3難度:0.5
  • 2.已知一組2n(n∈N*)個(gè)數(shù)據(jù):a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數(shù)為N,方差為s2,則( ?。?/h2>

    發(fā)布:2024/12/29 7:30:2組卷:54引用:4難度:0.5
  • 菁優(yōu)網(wǎng)3.先閱讀參考材料,再解決此問(wèn)題:
    參考材料:求拋物線弧y=x2(0≤x≤2)與x軸及直線x=2圍成的封閉圖形的面積
    解:把區(qū)間[0,2]進(jìn)行n等分,得n-1個(gè)分點(diǎn)A(
    2
    i
    n
    ,0)(i=1,2,3,…,n-1),過(guò)分點(diǎn)Ai,作x軸的垂線,交拋物線于Bi,并如圖構(gòu)造n-1個(gè)矩形,先求出n-1個(gè)矩形的面積和Sn-1,再求
    lim
    n
    →∞
    Sn-1,即是封閉圖形的面積,又每個(gè)矩形的寬為
    2
    n
    ,第i個(gè)矩形的高為(
    2
    i
    n
    2,所以第i個(gè)矩形的面積為
    2
    n
    ?(
    2
    i
    n
    2;
    Sn-1=
    2
    n
    [
    4
    ?
    1
    2
    n
    2
    +
    4
    ?
    2
    2
    n
    2
    +
    4
    ?
    3
    2
    n
    2
    +…+
    4
    ?
    n
    -
    1
    2
    n
    2
    ]=
    8
    n
    3
    [12+22+32+…+(n-1)2]=
    8
    n
    3
    ?
    n
    n
    -
    1
    2
    n
    -
    1
    6

    所以封閉圖形的面積為
    lim
    n
    →∞
    8
    n
    3
    ?
    n
    n
    -
    1
    2
    n
    -
    1
    6
    =
    8
    3

    閱讀以上材料,并解決此問(wèn)題:已知對(duì)任意大于4的正整數(shù)n,不等式
    1
    -
    1
    2
    n
    2
    +
    1
    -
    2
    2
    n
    2
    +
    1
    -
    3
    2
    n
    2
    +…+
    1
    -
    n
    -
    1
    2
    n
    2
    <an恒成立,則實(shí)數(shù)a的取值范圍為

    發(fā)布:2024/12/29 7:0:1組卷:70引用:2難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正