已知正項等差數(shù)列{an}與等比數(shù)列{bn}滿足a1=1,b2=4,且a2既是a1+b1和b3-a3的等差中項,又是其等比中項.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=1anan+2,n=2k-1 an?bn,n=2k
,其中k∈N*,求數(shù)列{cn}的前2n項和S2n;
(3)令cn=1bn-1,求證c2+c3+…+cn<23.
1 a n a n + 2 , n = 2 k - 1 |
a n ? b n , n = 2 k |
1
b
n
-
1
c
2
+
c
3
+
…
+
c
n
<
2
3
【考點】錯位相減法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:495引用:2難度:0.5
相似題
-
1.已知數(shù)列{an}、{bn}滿足
,若數(shù)列{an}是等比數(shù)列且a1=3,b4=4+b3.a1a2a3?an=3bn
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令cn=,求{cn}的前n項和為Sn.2bn(n+1)an發(fā)布:2024/12/6 20:30:1組卷:179引用:3難度:0.6 -
2.已知等差數(shù)列{an}的前n項和為Sn,且S8=100,a2=5,設(shè)數(shù)列{bn}的前n項和為Pn=2n+1-2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=anbn,數(shù)列{cn}的前n項和為Tn.發(fā)布:2024/12/7 19:0:1組卷:58引用:2難度:0.6 -
3.已知數(shù)列{an}中,a1=1,且an+1=2an+2n(n∈N*).
(1)求證:數(shù)列{}是等差數(shù)列,并求出an;an2n
(2)數(shù)列{an}前n項和為Sn,求Sn.發(fā)布:2024/12/7 22:0:2組卷:443引用:3難度:0.7
把好題分享給你的好友吧~~