連續(xù)投擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,向量a=(m,n)與向量b=(1,0)的夾角記為α,則α∈(0,π4)的概率為( ?。?/h1>
a
=
(
m
,
n
)
b
=
(
1
,
0
)
∈
(
0
,
π
4
)
【考點(diǎn)】數(shù)量積表示兩個(gè)平面向量的夾角;等可能事件和等可能事件的概率.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:91引用:13難度:0.9
相似題
-
1.如圖,AB是圓O的直徑,C、D是圓O上的點(diǎn),∠CBA=60°,∠ABD=45°,
,則x+y=.CD=xOA+yBC發(fā)布:2025/1/20 8:0:1組卷:2044引用:7難度:0.5 -
2.已知
=(2,1),|a|=2b.5
(1)若∥a,求b的坐標(biāo);b
(2)若(5-2a)⊥(b+a),求b與a的夾角.b發(fā)布:2024/12/29 13:0:1組卷:172引用:6難度:0.7 -
3.已知向量
,a=(x,2).且b=(1,-3),則(2a+b)⊥b與a的夾角是( ?。?/h2>b發(fā)布:2025/1/7 22:30:4組卷:22引用:1難度:0.5