我們?cè)谄吣昙?jí)曾學(xué)過(guò)“兩點(diǎn)之間線段最短”,利用這一知識(shí)點(diǎn)也可以解決兩條線段之和最小的相關(guān)問(wèn)題.
如圖①,已知點(diǎn)A、B在直線l的同一側(cè),在直線l上求作一點(diǎn)P,使得PA+PB最?。覀冎灰鼽c(diǎn)B關(guān)于l的對(duì)稱(chēng)點(diǎn)B′(如圖②),根據(jù)對(duì)稱(chēng)性可知,PB=PB′.因此,求AP+BP最小就相當(dāng)于求AP+PB′最?。@然,當(dāng)點(diǎn)A、P、B′在同一直線上時(shí),AP+PB′最小,因此連接AB′,AB′與直線l的交點(diǎn)就是要求的點(diǎn)P.

探究:四邊形ABCD是長(zhǎng)方形臺(tái)球桌的臺(tái)面,有白、黑兩球分別位于點(diǎn)E、F的位置.
(1)如圖③,怎樣擊打白球E,能使它先碰撞臺(tái)邊CD,經(jīng)反彈后再擊中黑球F?(畫(huà)出白球E經(jīng)過(guò)的路線)
(2)如圖④,怎樣擊打白球E,使它能先碰撞臺(tái)邊CD,經(jīng)反彈后又碰撞臺(tái)邊AB,然后再擊中黑球F?(畫(huà)出白球E經(jīng)過(guò)的路線)
【考點(diǎn)】作圖-軸對(duì)稱(chēng)變換;中心對(duì)稱(chēng);軸對(duì)稱(chēng)-最短路線問(wèn)題;生活中的軸對(duì)稱(chēng)現(xiàn)象.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:235引用:1難度:0.6
相似題
-
1.(1)如圖1,已知△ABC,請(qǐng)畫(huà)出△ABC關(guān)于直線AC對(duì)稱(chēng)的三角形.
(2)如圖2,若△ABC與△DEF關(guān)于直線l對(duì)稱(chēng),請(qǐng)作出直線l(請(qǐng)保留作圖痕跡)
(3)如圖3,在矩形ABCD中,已知點(diǎn)E,F(xiàn)分別在AD和AB上,請(qǐng)?jiān)谶匓C上作出點(diǎn)G,在邊CD作出點(diǎn)H,使得四邊形EFGH的周長(zhǎng)最?。?br />發(fā)布:2025/1/13 8:0:2組卷:108引用:3難度:0.3 -
2.如圖,在菱形ABCD中,AB=2,∠ABC=60°,點(diǎn)E在邊AD上,連接BE.作點(diǎn)A關(guān)于BE的對(duì)稱(chēng)點(diǎn)F,連接EF、BF、DF.現(xiàn)給出以下4個(gè)結(jié)論:①BE平分∠ABF;②菱形ABCD的面積等于
;③△DEF周長(zhǎng)的最小值為3;④當(dāng)EF⊥AD時(shí),23,其中正確的是 .(寫(xiě)出所有正確結(jié)論的序號(hào))AE=3-1發(fā)布:2025/1/28 8:0:2組卷:111引用:1難度:0.5 -
3.如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)在網(wǎng)格中畫(huà)出△ABC向下平移3個(gè)單位得到的△A1B1C1;
(2)在網(wǎng)格中畫(huà)出△ABC關(guān)于直線m對(duì)稱(chēng)的△A2B2C2;
(3)在直線m上畫(huà)一點(diǎn)P,使得C1P+C2P的值最?。?/h2>發(fā)布:2024/12/23 19:0:2組卷:1153引用:19難度:0.3