與橢圓x216+y212=1有公共焦點,且離心率為2的雙曲線的標(biāo)準(zhǔn)方程為( ?。?/h1>
x
2
16
+
y
2
12
2
【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:140引用:2難度:0.7
相似題
-
1.設(shè)橢圓C1的離心率為
,焦點在x軸上且長軸長為26,若曲線C2上的點到C1的兩個焦點的距離的差的絕對值為8,則曲線C2的標(biāo)準(zhǔn)方程為( )513發(fā)布:2024/10/10 14:0:1組卷:313引用:10難度:0.9 -
2.與橢圓
有公共焦點,且離心率e=x225+y216=1的雙曲線的方程為( )32發(fā)布:2024/12/7 1:30:1組卷:470引用:3難度:0.7 -
3.與橢圓C:
共焦點且過點x225+y216=1的雙曲線的標(biāo)準(zhǔn)方程為( ?。?/h2>P(2,2)發(fā)布:2024/10/18 21:0:1組卷:1172引用:9難度:0.8
把好題分享給你的好友吧~~