當(dāng)前位置:
2018-2019學(xué)年重慶市萬(wàn)州區(qū)江南中學(xué)八年級(jí)(上)第七周定時(shí)作業(yè)數(shù)學(xué)試卷(10月份)>
試題詳情
閱讀理解:
把兩個(gè)相同的數(shù)連接在一起就得到一個(gè)新數(shù),我們把它稱為“連接數(shù)”,例如:234234,3939…等,都是連接數(shù),其中,234234稱為六位連接數(shù),3939稱為四位連接數(shù).
(1)請(qǐng)寫(xiě)出一個(gè)六位連接數(shù)123123123123,它能能(填“能”或“不能”)被13整除.
(2)是否任意六位連接數(shù),都能被13整除,請(qǐng)說(shuō)明理由.
(3)若一個(gè)四位連接數(shù)記為M,它的各位數(shù)字之和的3倍記為N,M-N的結(jié)果能被13整除,這樣的四位連接數(shù)有幾個(gè)?
【考點(diǎn)】因式分解的應(yīng)用.
【答案】123123;能
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:324引用:6難度:0.3
相似題
-
1.閱讀下列題目的解題過(guò)程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2494引用:25難度:0.6 -
2.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個(gè)棱長(zhǎng)為a的大正方體進(jìn)行以下探索:
(1)在大正方體一角截去一個(gè)棱長(zhǎng)為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個(gè)長(zhǎng)方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長(zhǎng)方體①的體積為ab(a-b),類似地,長(zhǎng)方體②的體積為 ,長(zhǎng)方體③的體積為 ;(結(jié)果不需要化簡(jiǎn))
(3)將表示長(zhǎng)方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:279引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:383引用:7難度:0.6
把好題分享給你的好友吧~~