已知f(x),g(x)分別是定義在R上的奇函數和偶函數,且f(x)+g(x)=ex.
(1)分別求出函數f(x),g(x)的解析式;
(2)若?x∈(ln(2-1),ln5-12),都有(m2-2)f(x)+mg(2x)-4m>0成立,求實數m的取值范圍.
2
-
1
5
-
1
2
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:219難度:0.3
相似題
-
1.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6 -
2.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數,若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:12引用:5難度:0.5 -
3.設函數f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:535引用:36難度:0.5
把好題分享給你的好友吧~~