如圖,拋物線y=ax2-2x+c與x軸交于A(1,0),B(-3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?。咳舸嬖?,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)在第二象限內(nèi)的拋物線上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標(biāo)及△PBC的面積最大值;若不存在,請說明理由.
【考點】拋物線與x軸的交點;待定系數(shù)法求二次函數(shù)解析式;二次函數(shù)的性質(zhì);二次函數(shù)的最值;二次函數(shù)圖象上點的坐標(biāo)特征;軸對稱-最短路線問題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/24 14:0:4組卷:71引用:2難度:0.5
相似題
-
1.二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應(yīng)滿足( ?。?/h2>
發(fā)布:2024/12/23 14:30:1組卷:158引用:5難度:0.9 -
2.已知:二次函數(shù)y=-x2+x+6,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù),當(dāng)直線y=m與新圖象有2個交點時,m的取值范圍是( ?。?/h2>
發(fā)布:2024/12/23 12:0:2組卷:436引用:2難度:0.5 -
3.函數(shù)y=kx2-4x+4的圖象與x軸有交點,則k的取值范圍是( )
發(fā)布:2025/1/2 5:0:3組卷:376引用:2難度:0.7