對(duì)于任意三位正整數(shù)m,如果滿足各位上數(shù)字互不相同,且都不為零,那么稱(chēng)這個(gè)三位數(shù)為“育才數(shù)”.將一個(gè)“育才數(shù)”m的個(gè)位數(shù)字與百位數(shù)字對(duì)調(diào)后,得到一個(gè)新的三位數(shù)m,記f(m)=m′-m33.例如:m=123,m=321,則f(123)=321-12333=6.根據(jù)以上定義,回答下列問(wèn)題:
(1)填空:計(jì)算f(235)=99;
(2)若n為“育才數(shù)”,當(dāng)f(n)最小時(shí),求出n的最小值;
(3)若t=a2c為“育才數(shù)”,且滿足t+20f(t)=380+31c,求t的值.
f
(
m
)
=
m
′-
m
33
f
(
123
)
=
321
-
123
33
=
6
t
=
a
2
c
【考點(diǎn)】因式分解的應(yīng)用.
【答案】9
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/25 0:0:1組卷:200引用:1難度:0.5
相似題
-
1.閱讀下列題目的解題過(guò)程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2493引用:25難度:0.6 -
2.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類(lèi)似地,我們可以借助一個(gè)棱長(zhǎng)為a的大正方體進(jìn)行以下探索:
(1)在大正方體一角截去一個(gè)棱長(zhǎng)為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個(gè)長(zhǎng)方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長(zhǎng)方體①的體積為ab(a-b),類(lèi)似地,長(zhǎng)方體②的體積為 ,長(zhǎng)方體③的體積為 ;(結(jié)果不需要化簡(jiǎn))
(3)將表示長(zhǎng)方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:275引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:382引用:7難度:0.6
把好題分享給你的好友吧~~