試卷征集
加入會員
操作視頻

觀察下列等式:
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
……
按照以上式子的規(guī)律:
(1)寫出第5個等式,并猜想第n(n∈N*)個等式;
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n(n∈N*)個等式成立.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:98引用:4難度:0.5
相似題
  • 1.在數(shù)列{an}中,
    a
    1
    =
    1
    ,
    a
    n
    +
    1
    =
    2
    a
    n
    2
    +
    a
    n
    n
    N
    *

    (Ⅰ)分別求出a2,a3,a4,并根據(jù)上述結(jié)果猜想這個數(shù)列的通項公式;
    (Ⅱ)請用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.

    發(fā)布:2024/12/28 23:30:2組卷:41引用:2難度:0.6
  • 2.如圖,P1(x1,y1),P2(x2,y2),?,Pn(xn,yn)(0<y1<y2<?<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,?,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點).
    (1)求a1、a2、a3的值及數(shù)列{an}的遞推公式;
    (2)猜想點An(an,0)的橫坐標(biāo)an關(guān)于n的表達式,并用數(shù)學(xué)歸納法證明.

    發(fā)布:2024/7/13 8:0:9組卷:48引用:2難度:0.5
  • 3.已知點Pn(an,bn) 滿足an+1=anbn+1,bn+1=
    b
    n
    1
    -
    4
    a
    2
    n
    ,且點P1的坐標(biāo)為(1,-1).
    (1)求過點P1、P2的直線l的方程;
    (2)試用數(shù)學(xué)歸納法證明:對于任意n∈N,n≥1,點Pn都在(1)中的直線l上;
    (3)試求數(shù)列{an}、{bn}的通項公式.

    發(fā)布:2024/8/15 5:0:1組卷:151引用:1難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正