橢圓C:x2a2+y2b2=1(a>b>0)的離心率為63,且過點(3,1).
(1)求橢圓C的方程;
(2)A、B、P三點在橢圓C上,O為原點,設直線OA,OB的斜率分別是k1,k2,且k1?k2=-13,若OP=λOA+μOB,證明:λ2+μ2=1.
x
2
a
2
y
2
b
2
6
3
1
3
OP
OA
OB
【考點】橢圓與平面向量.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:44引用:2難度:0.4
相似題
-
1.已知橢圓E:
+x2a2=1(a>b>0)的右焦點為F,上頂點為A,直線AF與E相交的另一點為M.點M在x軸上的射影為點N,O為坐標原點,若y2b2=3AO,則E的離心率是( ?。?/h2>NM發(fā)布:2024/11/14 18:30:5組卷:487引用:6難度:0.7 -
2.橢圓C:
+x2a2=1(a>b>0)的左、右焦點分別為F1,F2,過點F1的直線l交橢圓C于A,B兩點,若|F1F2|=|AF2|,y2b2=2AF1,則橢圓C的離心率為( ?。?/h2>F1B發(fā)布:2024/12/6 18:30:2組卷:747引用:6難度:0.6 -
3.已知橢圓
=1(a>b>0)的左、右焦點分別為F1、F2,經過F1的直線交橢圓于A,B,△ABF2的內切圓的圓心為I,若3x2a2+y2b2+4IB+5IA=IF2,則該橢圓的離心率是( ?。?/h2>0發(fā)布:2024/11/28 2:30:1組卷:1144引用:12難度:0.5
把好題分享給你的好友吧~~