當(dāng)前位置:
試題詳情
我們規(guī)定正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義amn=nam(a>0,m,n是正整數(shù),且n.>1)如823=382=4.于是,在條件a>0,m,n是正整數(shù),且n.>1下,根式都可以寫成分?jǐn)?shù)指數(shù)冪的形式.正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義與負(fù)整數(shù)指數(shù)冪的意義相仿,我們規(guī)定a-mn=1amn(a>0,m,n是整數(shù),且n>1),規(guī)定了分?jǐn)?shù)指數(shù)冪的意義以后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù).整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)于有理數(shù)指數(shù)冪也同樣適用.根據(jù)上述定義,解答下面的問(wèn)題:
(1)求值:432=88,523523=352;
(2)計(jì)算:912-813=11;
(3)用分?jǐn)?shù)指數(shù)冪的形式表:a2?3a2(a>0);
(4)a12+a-12=5,求a+a-1(a>0).
a
m
n
=
n
a
m
8
2
3
=
3
8
2
a
-
m
n
=
1
a
m
n
4
3
2
5
2
3
5
2
3
3
5
2
9
1
2
-
8
1
3
3
a
2
a
1
2
+
a
-
1
2
【考點(diǎn)】分?jǐn)?shù)指數(shù)冪.
【答案】8;;1
5
2
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/12 8:0:1組卷:346引用:5難度:0.7
相似題
-
1.計(jì)算:
.1212-cot30°-(12)-1-(1-3)2發(fā)布:2024/11/7 8:0:2組卷:111引用:1難度:0.8 -
2.若2xmy3和-
x8yn是同類項(xiàng),則23=( ?。?/h2>n-m發(fā)布:2024/10/16 19:0:1組卷:58引用:1難度:0.7 -
3.我們把正整數(shù)指數(shù)冪的運(yùn)算擴(kuò)充到了整數(shù)指數(shù)冪的運(yùn)算,同樣,我們把整數(shù)指數(shù)冪的運(yùn)算擴(kuò)充到分?jǐn)?shù)指數(shù)冪的運(yùn)算.
(i)正數(shù)的分?jǐn)?shù)指數(shù)冪的形式是(a>0,m,n都是有理數(shù),n>1).amn
(ii)正數(shù)的負(fù)整數(shù)指數(shù)冪的意義與負(fù)整數(shù)指數(shù)冪的意義相仿,我們規(guī)定,a=^-mn(a>0,m,n都是有理數(shù),n>1).1amn
(iii)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)于有理數(shù)指數(shù)冪也同樣適用,即對(duì)于任意有理數(shù)r,s均有下面的運(yùn)算性質(zhì):
①ar?as=ar+s(a>0,r,s都是有理數(shù));
②(ar)s=ars(a>0,r,s都是有理數(shù));
③(ab)r=ar?br(a>0,b>0,r是有理數(shù)).
請(qǐng)運(yùn)用分?jǐn)?shù)指數(shù)冪的性質(zhì)計(jì)算下列各式(式中字母均是正數(shù)).
(1)(2ab^23)(-6a^12b^12)÷(-3a^13b^16);^56
(2)(mn^14)8.^-38發(fā)布:2024/11/12 8:0:1組卷:70引用:1難度:0.7