閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax-3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添-適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實數(shù),試比較x2-4x+5與-x2+4x-4的大小,說明理由.
【考點】因式分解-十字相乘法等.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:5249引用:13難度:0.1
相似題
-
1.當(dāng)k=時,二次三項式x2+kx-12分解因式的結(jié)果是(x+4)(x-3).
發(fā)布:2024/11/3 18:0:1組卷:504引用:4難度:0.6 -
2.李偉課余時間非常喜歡研究數(shù)學(xué),在一次課外閱讀中遇到一個解一元二次不等式的問題:x2-2x-3>0.
經(jīng)過思考,他給出了下列解法:
解:左邊因式分解可得:(x+1)(x-3)>0,或x+1>0x-3>0,x+1<0x-3<0
解得x>3或x<-1.
聰明的你,請根據(jù)上述思想求一元二次不等式的解集:(x-1)(x-2)(x-3)>0.發(fā)布:2024/12/23 9:30:1組卷:1528引用:3難度:0.1 -
3.已知,多項式x2-mx+n可因式分解為(x+3)(x-4),則m的值為( ?。?/h2>
發(fā)布:2024/11/3 15:0:3組卷:347引用:4難度:0.6
把好題分享給你的好友吧~~