試卷征集
加入會員
操作視頻

對任意的x≠0的函數(shù)f(x)滿足對任意的a,b都有f(ab)=f(a)+f(b),且當(dāng)x>1時,f(x)>0.
(1)判斷f(x)的奇偶性,并加以證明;
(2)判斷f(x)的單調(diào)性,并加以證明;
(3)對任意的0<t<1都有不等式f(t-t2)-f(k)<0恒成立,求k的取值范圍.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/13 0:0:8組卷:63引用:1難度:0.5
相似題
  • 1.已知函數(shù)y=f(x)的定義域為R,其圖像是一段連續(xù)曲線,y=f(x)在[0,2]上是嚴(yán)格減函數(shù),對任意的a、b∈R,恒有f(a-b)+f(a+b)=4f(a)?f(b),且f(0)≠0,
    f
    1
    =
    1
    4

    (1)判斷函數(shù)y=f(x)的奇偶性,并證明;
    (2)證明:方程8f(x)=-3在區(qū)間[-3,0)上有解;
    (3)當(dāng)-2≤t≤2時,解關(guān)于t的不等式
    0
    4
    f
    t
    3

    發(fā)布:2024/10/21 21:0:4組卷:45引用:2難度:0.4
  • 2.已知f(x)是定義在(-∞,0)∪(0,+∞)上的函數(shù),滿足下列兩個條件:①當(dāng)x<0時,f(x)<0恒成立;②對任意的x,y∈(-∞,0)∪(0,+∞),都有
    f
    x
    f
    y
    =
    f
    xy
    +
    f
    y
    x

    (1)求f(1)和f(-1);
    (2)判斷f(x)的奇偶性,并證明;
    (3)若f(x)在區(qū)間(0,1]上單調(diào)遞減,直接寫出關(guān)于x的不等式
    f
    x
    2
    +
    x
    +
    1
    f
    1
    3
    的解集.

    發(fā)布:2024/10/20 1:0:1組卷:128引用:2難度:0.4
  • 3.已知定義域在R上的函數(shù)f(x)滿足:f(x)=f(x-y)+f(y)+f(0),且當(dāng)x>0時,f(x)<0.
    (1)證明函數(shù)f(x)在定義域上的單調(diào)性;
    (2)證明函數(shù)f(x)在定義域上奇偶性;
    (3)若?x∈(1,2),使得關(guān)于x的不等式f(x2-ax)+f(x-3)>0成立,求實數(shù)a的取值范圍.

    發(fā)布:2024/10/17 10:0:2組卷:112引用:1難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正