已知函數(shù)f(x)=(x2-3x+3)?ex定義域為[-2,t](t>-2),設(shè)f(-2)=m,f(t)=n.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(2)求證:n>m;
(3)求證:對于任意的t>-2,總存在x0∈(-2,t),滿足f′(x0)ex0=23(t-1)2,并確定這樣的x0的個數(shù).
f
′
(
x
0
)
e
x
0
2
3
【考點】利用導(dǎo)數(shù)研究函數(shù)的最值;函數(shù)的定義域及其求法;函數(shù)的零點與方程根的關(guān)系;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:16引用:2難度:0.5
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1 -
3.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5