在平面直角坐標(biāo)系xoy中,已知圓O:x2+y2=r2(r>0)與圓M:(x-6)2+y2=4.
(1)若圓O與圓M有公共點,求正實數(shù)r的取值范圍;
(2)求過點H(4,3)且與圓M相切的直線l的方程;
(3)當(dāng)r=2時,設(shè)P為平面上的點,且滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓O和圓M相交,且直線l1被圓O截得的弦長與直線l2被圓M截得的弦長相等,試求所有滿足條件的點P的坐標(biāo).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:56引用:1難度:0.4
相似題
-
1.已知圓C:x2+y2+2kx+2y+k2=0(k<0)和定點P(1,-1),若過點P可以作兩條直線與圓C相切,則k的取值范圍是( ?。?/h2>
發(fā)布:2024/12/18 18:30:1組卷:153引用:4難度:0.7 -
2.已知圓M與直線
相切于點3x-7y+4=0,圓心M在x軸上.(1,7)
(1)求圓M的方程;
(2)過點M且不與x軸重合的直線與圓M相交于A,B兩點,O為坐標(biāo)原點,直線OA,OB分別與直線x=8相交于C,D兩點,記△OAB,△OCD的面積分別是S1、S2.求的取值范圍.S1S2發(fā)布:2024/10/9 1:0:1組卷:169引用:9難度:0.5 -
3.在直角坐標(biāo)系xOy中,直線
交x軸于M,以O(shè)為圓心的圓與直線l相切.l:x-3y-4=0
(1)求圓O的方程;
(2)設(shè)點N(x0,y0)為直線y=-x+3上一動點,若在圓O上存在點P,使得∠ONP=45°,求x0的取值范圍.發(fā)布:2024/10/23 16:0:1組卷:19引用:1難度:0.5
把好題分享給你的好友吧~~