閱讀理解:
材料1:對于一個關(guān)于x的二次三項式ax2+bx+c(a≠0),除了可以利用配方法求該多項式的取值范圍外,愛思考的小川同學(xué)還想到了其他的方法:比如先令ax2+bx+c=y(a≠0),然后移項可得:ax2+bx+(c-y)=0,再利用一元二次方程根的判別式來確定y的取值范圍,請仔細(xì)閱讀下面的例子:
例:求x2+2x+5的取值范圍;
解:令x2+2x+5=y
∴x2+2x+(5-y)=0
∴Δ=4-4×(5-y)≥0
∴y≥4
∴x2+2x+5≥4;
材料2:在學(xué)習(xí)完一元二次方程的解法后,愛思考的小川同學(xué)又想到仿造一元二次方程的解法來解決一元二次不等式的解集問題,他的具體做法如下:
若關(guān)于x的一元二次方程ax2+bx+c=0(a>0)有兩個不相等的實數(shù)根x1、x2(x1>x2)
則關(guān)于x的一元二次不等式ax2+bx+c≥0(a>0)的解集為:x≥x1或x≤x2
則關(guān)于x的一元二次不等式ax2+bx+c≤0(a>0)的解集為:x2≤x≤x1;
材料3:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不相等的實數(shù)根x1,x2;
則x1+x2=-ba;x1?x2=ca,我們稱之為韋達定理;
請根據(jù)上述材料,解答下列問題:
(1)若關(guān)于x的二次三項式x2+ax+3(a為常數(shù))的最小值為-7,則a=±210±210.
(2)求出代數(shù)式x2-4x+22x-1的取值范圍.
(3)若關(guān)于x的代數(shù)式2bx+ax2-2x+3(其中a、b為常數(shù),且ab≠0)的最小值為-2,最大值為4,請求出滿足條件的a、b的值.
b
a
c
a
10
10
x
2
-
4
x
+
2
2
x
-
1
2
bx
+
a
x
2
-
2
x
+
3
【答案】±2
10
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:474引用:3難度:0.4
相似題
-
1.對于一元二次方程ax2+bx+c=0(a≠0),下列說法:
①若a+c=b,則b2-4ac≥0;
②若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
③若x=c是方程ax2+bx+c=0的一個根,則一定有ac+b+1=0成立;
④若x=x0是一元二次方程ax2+bx+c=0的根,則;b2-4ac=(2ax0+b)2
其中正確的( ?。?/h2>發(fā)布:2024/12/23 13:0:2組卷:437引用:6難度:0.5 -
2.已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根,第三邊BC的長為5,當(dāng)△ABC是直角三角形時,求k的值.發(fā)布:2024/12/23 18:0:1組卷:2693引用:11難度:0.7 -
3.已知關(guān)于x的一元二次方程mx2-3(m+1)x+2m+3=0
(1)如果該方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)在(1)的條件下,當(dāng)該方程的兩個根都是整數(shù),求正整數(shù)m的值.發(fā)布:2024/12/23 11:0:1組卷:961引用:4難度:0.6