試卷征集
加入會員
操作視頻

著名數(shù)學家華羅庚先生說:“數(shù)形結合百般好,隔離分家萬事休”.事實上,有些代數(shù)問題,通過構造圖形來解,常使人茅塞頓開,突破常規(guī)思維,進入新的境界;還有三國時期數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法,給出了勾股定理的詳細證明--他用幾何圖形的截、割、拼、補來證明代數(shù)式之間的恒等關系,既具嚴密性,又具直觀性,由此可見,“數(shù)形結合思想”在解決數(shù)學問題中占有重要地位,請你根據(jù)所學的數(shù)學知識自己編寫一道用數(shù)形結合思想解決的實際問題,說明解題思路,給出解答過程.同學們展開你的想象力,試試吧!

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:36引用:1難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.如圖所示的正方形圖案是用4個全等的直角三角形拼成的.已知正方形ABCD的面積為25,正方形EFGH的面積為1,若用x、y分別表示直角三角形的兩直角邊(x>y),下列三個結論:①x2+y2=25;②x-y=1;③xy=12.其中正確的是( ?。?/h2>

    發(fā)布:2024/11/5 2:30:2組卷:561引用:3難度:0.6
  • 菁優(yōu)網(wǎng)2.如圖所示的“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲.該圖由四個全等的直角三角形和一個小正方形拼成一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b.若ab=10,大正方形面積為25,則小正方形邊長為( ?。?/h2>

    發(fā)布:2024/11/1 11:30:2組卷:1206引用:7難度:0.5
  • 菁優(yōu)網(wǎng)3.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形(如圖1)拼成的一個大正方形(如圖2).設直角三角形較長
    直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則圖2中EF的長為(  )

    發(fā)布:2024/11/4 1:0:1組卷:1010引用:11難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正