定義:若兩個(gè)函數(shù)的圖象關(guān)于某一點(diǎn)Q中心對稱,則稱這兩個(gè)函數(shù)關(guān)于點(diǎn)Q互為“對稱函數(shù)”.例如,函數(shù)y=x2與y=-x2關(guān)于原點(diǎn)O互為“對稱函數(shù)”.
(1)函數(shù)y=-x+1關(guān)于原點(diǎn)O的“對稱函數(shù)”的函數(shù)解析式為 y=-x-1y=-x-1,函數(shù)y=(x-2)2-1關(guān)于原點(diǎn)O的“對稱函數(shù)”的函數(shù)解析式為 y=-(x-2)2-1y=-(x-2)2-1;
(2)已知函數(shù)y=x2-2x與函數(shù)G關(guān)于點(diǎn)Q(0,1)互為“對稱函數(shù)”,若函數(shù)y=x2-2x與函數(shù)G的函數(shù)值y都隨自變量x的增大而減小,求x的取值范圍;
(3)已知點(diǎn)A(0,1),點(diǎn)B(4,1),點(diǎn)C(2,0),二次函數(shù)y=ax2-2ax-3a(a>0),與函數(shù)N關(guān)于點(diǎn)C互為“對稱函數(shù)”,將二次函數(shù)y=ax2-2ax-3a(a>0)與函數(shù)N的圖象組成的圖形記為W,若圖形W與線段AB恰有2個(gè)公共點(diǎn),直接寫出a的取值范圍.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】y=-x-1;y=-(x-2)2-1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/19 3:0:0組卷:662引用:3難度:0.1
相似題
-
1.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3613引用:36難度:0.4 -
2.已知,如圖1,過點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.14
(1)求點(diǎn)A、B、F的坐標(biāo);
(2)求證:CF⊥DF;
(3)點(diǎn)P是拋物線y=x2對稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2654引用:7難度:0.7
把好題分享給你的好友吧~~