已知函數(shù)f(x)=|x-a|,g(x)=ax,(a∈R).
(1)若a=1,求方程f(x)=g(x)的解;
(2)若方程f(x)=g(x)有兩解,求出實數(shù)a的取值范圍;
(3)若a>0,記F(x)=g(x)f(x),試求函數(shù)y=F(x)在區(qū)間[1,2]上的最大值.
【考點】函數(shù)的最值;分段函數(shù)的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/5 8:0:8組卷:462引用:6難度:0.1
相似題
-
1.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內存在最大值,且最大值為2,g(x)=
,若對任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實數(shù)m的取值可以是( )12發(fā)布:2024/12/29 13:30:1組卷:133引用:3難度:0.5 -
2.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( )13發(fā)布:2024/12/29 3:0:1組卷:110引用:4難度:0.9 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:120引用:4難度:0.5
把好題分享給你的好友吧~~