請閱讀下列材料,完成相應(yīng)的任務(wù):
凸四邊形的性質(zhì)研究
如果把某個四邊形的任何一邊向兩端延長,其他各邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形,凸四邊形是我們數(shù)學(xué)學(xué)習(xí)中常見的圖形,它有一個非常有趣的性質(zhì):任意凸四邊形被對角線分成的兩對對頂三角形的面積之積相等,例如,在圖①中,凸四邊形ABCD的對角線AC,BD相交于點O,且AC⊥BD,△AOB,△BOC,△COD,△AOD的面積分別為S1,S2,S3,S4則有S1?S3=S2?S4,證明過程如下:S1?S3=(12OB?OA)?(12OD?OC)=14OA?OB?OC?OD…任務(wù):
(1)請將材料中的證明過程補充完整;
(2)如圖②,任意凸四邊形ABCD的對角線AC,BD相交于點O,分別記△AOB,△BOC,△COD,△AOD的面積為S1,S2,S3,S4,求證:S1?S3=S2?S4;
(3)如圖③,在四邊形ABCD中,對角線AC,BD相交于點O,S△AOD=4,S△BOC=6,S△AOB=3,則四邊形ABCD的面積為 2121.
S
1
?
S
3
=
(
1
2
OB
?
OA
)
?
(
1
2
OD
?
OC
)
=
1
4
OA
?
OB
?
OC
?
OD
【考點】四邊形綜合題.
【答案】21
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/7 8:0:9組卷:43引用:2難度:0.2
相似題
-
1.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進(jìn)一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關(guān)系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
2.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1469引用:7難度:0.3 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1410引用:10難度:0.4
把好題分享給你的好友吧~~