試卷征集
加入會員
操作視頻

勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結(jié)合的紐帶之一,它不但因證明方法層出不窮吸引著人們,更因為應(yīng)用廣泛而使人入迷.
(1)證明勾股定理
據(jù)傳當(dāng)年畢達哥拉斯借助如圖3所示的兩個圖驗證了勾股定理,請你說說其中的道理.
菁優(yōu)網(wǎng)
(2)應(yīng)用勾股定理
①應(yīng)用場景1——在數(shù)軸上畫出表示無理數(shù)的點.
如圖1,在數(shù)軸上找出表示4的點A,過點A作直線l垂直于DA,在l上取點B,使AB=2,以點D為圓心,DB為半徑作弧,則弧與數(shù)軸的交點C表示的數(shù)是
13
+1
13
+1

②應(yīng)用場景2——解決實際問題.
如圖2,鄭州某公園有一秋千,秋千靜止時,踏板離地的垂直高度BE=0.5m,將它往前推2m至C處時,水平距離CD=2m,踏板離地的垂直高度CF=1.5m,它的繩索始終拉直,求繩索AC的長.

【答案】
13
+1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/3 8:0:9組卷:323引用:5難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.如圖所示的“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.該圖由四個全等的直角三角形和一個小正方形拼成一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=10,大正方形面積為25,則小正方形邊長為( ?。?/h2>

    發(fā)布:2024/11/1 11:30:2組卷:1209引用:7難度:0.5
  • 菁優(yōu)網(wǎng)2.如圖所示的正方形圖案是用4個全等的直角三角形拼成的.已知正方形ABCD的面積為25,正方形EFGH的面積為1,若用x、y分別表示直角三角形的兩直角邊(x>y),下列三個結(jié)論:①x2+y2=25;②x-y=1;③xy=12.其中正確的是( ?。?/h2>

    發(fā)布:2024/11/5 2:30:2組卷:566引用:3難度:0.6
  • 菁優(yōu)網(wǎng)3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形(如圖1)拼成的一個大正方形(如圖2).設(shè)直角三角形較長
    直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則圖2中EF的長為( ?。?/h2>

    發(fā)布:2024/11/4 1:0:1組卷:1024引用:11難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正