試卷征集
加入會員
操作視頻

(1)對于試題“如圖①,在正方形ABCD中,E、F分別是BC、DC上的點,且∠EAF=45°,連接EF,探究BE、DF、EF之間的數(shù)量關(guān)系”,數(shù)學(xué)王老師給出了如下的思路:
延長CB到M,使得BM=DF,連接AM,……,利用三角形全等的判定及性質(zhì)解答,……
請根據(jù)數(shù)學(xué)王老師的思路探究BE、DF、EF之間的數(shù)量關(guān)系,并說明理由;
(2)如圖②,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、DC上的點,且∠EAF=
1
2
∠BAD,此時(1)中的結(jié)論是否仍然成立?請說明理由.
菁優(yōu)網(wǎng)

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:450引用:4難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為( ?。?/h2>

    發(fā)布:2024/12/23 20:0:2組卷:861引用:5難度:0.3
  • 2.閱讀下面的例題及點撥,并解決問題:菁優(yōu)網(wǎng)
    如圖①,在等邊△ABC中,M是BC邊上一點(不含端點B,C),N是△ABC的外角∠ACH的平分線上一點,且AM=MN.求證:∠AMN=60°.
    (1)點撥:如圖②,作∠CBE=60°,BE與NC的延長線相交于點E,得等邊△BEC,連接EM.易證:△ABM≌△EBM(SAS),請完成剩余證明過程:
    (2)拓展:如圖③,在正方形A1B1C1D1中,M1是B1C1邊上一點(不含端點B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點,且A1M1=M1N1.求證:∠A1M1N1=90°.

    發(fā)布:2024/12/23 19:0:2組卷:1637引用:6難度:0.1
  • 菁優(yōu)網(wǎng)3.如圖,在正方形ABCD中,AB=3,點EF分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為(  )

    發(fā)布:2024/12/23 19:0:2組卷:1411引用:14難度:0.8
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正