已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,S4=10,數(shù)列{bn}滿足:b1=3,bn+1=2bn-1(n∈N*).
(1)證明:{bn-1}是等比數(shù)列;
(2)證明:S2n+1?bn>2Sn?bn+1;
(3)設(shè)數(shù)列{cn}滿足:cn=an+1a2na2n+2,n為奇數(shù) a2nbn,n為偶數(shù)
.證明:2n∑k=1ck<94.
b
n
+
1
=
2
b
n
-
1
(
n
∈
N
*
)
c
n
=
a n + 1 a 2 n a 2 n + 2 , n 為奇數(shù) |
a 2 n b n , n 為偶數(shù) |
2
n
∑
k
=
1
c
k
<
9
4
【考點(diǎn)】錯(cuò)位相減法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/24 14:0:35組卷:649引用:4難度:0.4
相似題
-
1.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
2.已知數(shù)列{an}滿足a1=2,an+1=3an+2(n∈N*).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)設(shè)bn=(3n-2)?an,求數(shù)列{bn}的前n項(xiàng)和Sn.發(fā)布:2024/12/29 0:30:2組卷:429引用:4難度:0.6 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:425引用:12難度:0.6
把好題分享給你的好友吧~~