小明同學(xué)某天發(fā)現(xiàn),在陽(yáng)光下的照射下,籃球在地面留下的影子如圖所示,設(shè)過籃球的中心O且與太陽(yáng)平行光線垂直的平面為α,地面所在平面為β,籃球與地面的切點(diǎn)為H,球心為O,球心O在地面的影子為點(diǎn)O';已知太陽(yáng)光線與地面的夾角為θ;
(1)求平面α與平面β所成角φ(用θ表示);
(2)如圖,AB為球O的一條直徑,A′、B'為A、B在地面的影子,點(diǎn)H在線段A′B'上,小明經(jīng)過研究資料發(fā)現(xiàn),當(dāng)θ≠π2時(shí),籃球的影子為一橢圓,且點(diǎn)H為橢圓的焦點(diǎn),線段A′B'為橢圓的長(zhǎng)軸,求此時(shí)該橢圓的離心率(用θ表示).
?
θ
≠
π
2
【考點(diǎn)】橢圓的幾何特征;二面角的平面角及求法.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/25 4:0:2組卷:45引用:1難度:0.5
相似題
-
1.已知M是橢圓C:
=1上的一點(diǎn),則點(diǎn)M到兩焦點(diǎn)的距離之和是( )x29+y25發(fā)布:2024/12/22 15:30:10組卷:597引用:8難度:0.8 -
2.橢圓2x2+y2=1的( ?。?/h2>
發(fā)布:2024/12/20 12:0:3組卷:69引用:1難度:0.7 -
3.19世紀(jì)法國(guó)著名數(shù)學(xué)家加斯帕爾?蒙日,創(chuàng)立了畫法幾何學(xué),推動(dòng)了空間幾何學(xué)的獨(dú)立發(fā)展,提出了著名的蒙日?qǐng)A定理:橢圓的兩條切線互相垂直,則切線的交點(diǎn)位于一個(gè)與橢圓同心的圓上,稱為蒙日?qǐng)A,橢圓
(a>b>0)的蒙日?qǐng)A方程為x2+y2=a2+b2.若圓(x-3)2+(y-b)2=9與橢圓x2a2+y2b2=1+y2=1的蒙日?qǐng)A有且僅有一個(gè)公共點(diǎn),則b的值為( ?。?/h2>x23發(fā)布:2024/12/20 2:30:1組卷:295引用:7難度:0.6
把好題分享給你的好友吧~~