在直角坐標系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標系.已知直線l的極坐標方程為ρcos(θ+π3)=3,曲線C的極坐標方程為ρ=4acosθ(a>0).
(1)設t為參數(shù),若y=23+12t,求直線l的參數(shù)方程;
(2)已知直線l與曲線C交于P,Q,設M(0,-23),且|PQ|2=|MP|?|MQ|,求實數(shù)a的值.
ρcos
(
θ
+
π
3
)
=
3
y
=
2
3
+
1
2
t
M
(
0
,-
2
3
)
【考點】參數(shù)方程化成普通方程.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/7 8:0:9組卷:34引用:3難度:0.5
相似題
-
1.在平面直角坐標系xOy中,已知曲線C1:
(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)設射線與C1相交于A,B兩點,與C2相交于M點(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負半軸重合,且單位長度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5 -
3.已知三個方程:①
②x=ty=t2③x=tanty=tan2t(都是以t為參數(shù)).那么表示同一曲線的方程是( ?。?/h2>x=sinty=sin2t發(fā)布:2025/1/7 22:30:4組卷:105引用:2難度:0.7