已知橢圓E:x2a2+y2b2=1(a>b>0)的一個(gè)頂點(diǎn)A(0,-2),以橢圓E的四個(gè)頂點(diǎn)圍成的四邊形面積為45.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(diǎn)P(0,-3)作斜率為k的直線與橢圓E交于不同的兩點(diǎn)B,C,直線AB、AC分別與直線y=-3交于點(diǎn)M、N,當(dāng)|PM|+|PN|≤15時(shí),求k的取值范圍.
x
2
a
2
y
2
b
2
5
【考點(diǎn)】直線與橢圓的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:3801引用:8難度:0.2
相似題
-
1.已知橢圓E:
的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( )x2a2+y2b2=1(a>b>0)發(fā)布:2024/12/3 9:0:2組卷:927引用:27難度:0.7 -
2.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:451引用:3難度:0.6 -
3.已知
為橢圓A(-1,233),B(1,-233),P(x0,y0)上不同的三點(diǎn),直線l:x=2,直線PA交l于點(diǎn)M,直線PB交l于點(diǎn)N,若S△PAB=S△PMN,則x0=( ?。?/h2>C:x23+y22=1發(fā)布:2024/12/6 6:0:1組卷:231引用:6難度:0.5
把好題分享給你的好友吧~~