數(shù)學學習總是循序漸進、不斷延伸拓展的,數(shù)學知識往往起源于人們?yōu)榱私鉀Q某些問題,通過觀察、測量、思考、猜想出的一些結(jié)論.但是所猜想的結(jié)論不一定都是正確的.人們從已有的知識出發(fā),經(jīng)過推理、論證后,如果所猜想的結(jié)論在邏輯上沒有矛盾,就可以作為新的推理的前提,數(shù)學中稱之為定理.
(1)推理證明:
在八年級學習等腰三角形和直角三角形時,借助工具測量就能夠發(fā)現(xiàn):“直角三角形斜邊上的中線等于斜邊的一半”,當時并未說明這個結(jié)論的正確性.九年級學習了矩形的判定和性質(zhì)之后,就可以解決這個問題了.如圖1,在Rt△ABC中,若CD是斜邊AB上的中線,則CD=12AB,請你用矩形的性質(zhì)證明這個結(jié)論的正確性.
(2)遷移運用:利用上述結(jié)論解決下列問題:
①如圖2,在線段BD異側(cè)以BD為斜邊分別構(gòu)造兩個直角三角形△ABD與△CBD,E、F分別是BD、AC的中點,判斷EF與AC的位置關(guān)系并說明理由;
②如圖3,?ABCD對角線AC、BD相交于點O,分別以AC、BD為斜邊且在同側(cè)分別構(gòu)造兩個直角三角形△ACE與△BDE,求證:?ABCD是矩形.
CD
=
1
2
AB
【考點】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:251引用:3難度:0.5
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1464引用:7難度:0.3 -
2.如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.發(fā)布:2024/12/23 18:0:1組卷:2030引用:13難度:0.1 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~