試卷征集
加入會(huì)員
操作視頻

已知點(diǎn)P在橢圓
x
2
49
+
y
2
24
=
1
上,F(xiàn)1、F2是橢圓的焦點(diǎn),且PF1⊥PF2,求
(1)|PF1|?|PF2|
(2)△PF1F2的面積.

【考點(diǎn)】三角形的面積公式
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:164引用:3難度:0.5
相似題
  • 1.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若b=1,c=
    3
    ,
    A
    =
    π
    3
    ,則S△ABC=(  )

    發(fā)布:2024/12/3 8:0:32組卷:4引用:1難度:0.9
  • 2.中國(guó)南宋大數(shù)學(xué)家秦九韶提出了“三斜求積術(shù)”,即已知三角形三邊長(zhǎng)求三角形面積的公式:設(shè)三角形的三條邊長(zhǎng)分別為a、b、c,則三角形的面積S可由公式
    S
    =
    p
    p
    -
    a
    p
    -
    b
    p
    -
    c
    求得,其中p為三角形周長(zhǎng)的一半,這個(gè)公式也被稱為海倫?秦九韶公式,現(xiàn)有一個(gè)三角形的邊長(zhǎng)a、b、c滿足a=3,b+c=5,則此三角形面積的最大值為( ?。?/h2>

    發(fā)布:2024/10/18 7:0:2組卷:7引用:1難度:0.7
  • 3.凸四邊形PABQ中,其中A、B為定點(diǎn),AB=
    3
    ,P、Q為動(dòng)點(diǎn),滿足AP=PQ=QB=1.
    (1)寫出cosA與cosQ的關(guān)系式;
    (2)設(shè)△APB和△PQB的面積分別為S和T,求S2+T2的最大值,以及此時(shí)凸四邊形PABQ的面積.

    發(fā)布:2024/11/11 8:0:1組卷:121引用:4難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正