試卷征集
加入會員
操作視頻

觀察下列各式及其展開式:
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

請你猜想(a+b)10的展開式第三項的系數(shù)是( ?。?/h1>

【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/10 8:0:8組卷:4035引用:80難度:0.9
相似題
  • 菁優(yōu)網(wǎng)1.世界上著名的萊布尼茨三角形如圖所示:則排在第10行從左邊數(shù)第3個位置上的數(shù)是

    發(fā)布:2024/11/5 8:0:2組卷:234引用:6難度:0.5
  • 2.王師傅在某個特殊的崗位上工作,他每上8天班后,就連續(xù)休息2天,如果這個星期六和星期天他休息,那么,至少再過
     
    個星期后他才能又星期天休息.

    發(fā)布:2024/11/6 8:0:1組卷:45引用:1難度:0.5
  • 3.如圖所示,對于任意正整數(shù),若n為奇數(shù)則乘3再加1,若n為偶數(shù)則除以2,在這樣一次變化下,我們得到一個新的自然數(shù).在1937年LotharCollatz提出了一個問題:如此反復(fù)這種變換,是否對于所有的正整數(shù),最終都能變換到1呢?這就是數(shù)學(xué)中著名的“考拉茲猜想”.如果某個正整數(shù)通過上述變換能變成1,我們就把第一次變成1時所經(jīng)過的變換次數(shù)稱為它的路徑長,例如5經(jīng)過5次變成1,則路徑長m=5.若輸入數(shù)n,路徑長為m,當(dāng)m=7時,n的所有可能值有
    個,其中最小值為

    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/7 8:0:2組卷:72引用:2難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正