用繪圖軟件繪制拋物線m:y=-x2-2x+3與動直線l:y=a相交于兩點,圖1為a=3時的視窗情形.
(1)求圖1中A,B兩交點之間的距離;
(2)如圖2,將圖1中的直線l繞點B旋轉(zhuǎn)得到l',且l'經(jīng)過拋物線m與x軸的交點C,M為拋物線BC段上一動點,過點M作MN∥y軸與BC交于點N,求MN的最大值;
(3)視窗的大小不變,但其可視范圍可以變化,且變化前后原點O始終在視窗中心(例如:將圖1中坐標(biāo)系的單位長度變?yōu)樵瓉淼?倍,如圖3,其可視范圍就由-6≤x≤6及-5≤y≤5變成了-12≤x≤12及-10≤y≤10).若l與m的交點分別是點P和Q(4,a),為能看到拋物線m在點P,Q之間的一整段圖象,需要將圖1中坐標(biāo)系的單位長度至少變?yōu)樵瓉淼膋倍,求整數(shù)k的值.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:103引用:3難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標(biāo)是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3639引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標(biāo)平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( )5發(fā)布:2024/12/26 1:30:3組卷:2664引用:7難度:0.7
相關(guān)試卷