我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微;數(shù)形結(jié)合百般好,隔離分家萬(wàn)事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個(gè)最主要的研究對(duì)象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
某校數(shù)學(xué)興趣小組,在學(xué)習(xí)完勾股定理和實(shí)數(shù)后,進(jìn)行了如下的問(wèn)題探索與分析
【提出問(wèn)題】已知0<x<1,求1+x2+1+(1-x)2的最小值.
【分析問(wèn)題】由勾股定理,可以通過(guò)構(gòu)造直角三角形的方法,來(lái)分別表示長(zhǎng)度為1+x2和1+(1-x)2的線段,將代數(shù)求和轉(zhuǎn)化為線段求和問(wèn)題.
【解決問(wèn)題】
(1)如圖,我們可以構(gòu)造邊長(zhǎng)為1的正方形ABCD,P為BC邊上的動(dòng)點(diǎn).設(shè)BP=x,則PC=1-x.則1+x2+1+(1-x)2=APAP+PDPD的線段和;
(2)在(1)的條件下,已知0<x<1,求1+x2+1+(1-x)2的最小值;
【應(yīng)用拓展】(3)應(yīng)用數(shù)形結(jié)合思想,求x2+9-x2-12x+37的最大值.
1
+
x
2
+
1
+
(
1
-
x
)
2
1
+
x
2
1
+
(
1
-
x
)
2
1
+
x
2
+
1
+
(
1
-
x
)
2
1
+
x
2
+
1
+
(
1
-
x
)
2
x
2
+
9
x
2
-
12
x
+
37
【考點(diǎn)】四邊形綜合題.
【答案】AP;PD
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:674引用:2難度:0.3
相似題
-
1.如圖,∠BOD=45°,BO=DO,點(diǎn)A在OB上,四邊形ABCD是矩形,連接AC,BD交于點(diǎn)E,連接OE交AD于點(diǎn)F.下列4個(gè)判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點(diǎn)G是線段OF的中點(diǎn),則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號(hào))2發(fā)布:2024/12/23 18:30:1組卷:1464引用:7難度:0.3 -
2.如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由.發(fā)布:2024/12/23 18:0:1組卷:2031引用:13難度:0.1 -
3.四邊形ABCD是矩形,點(diǎn)E是射線BC上一點(diǎn),連接AC,DE.
(1)如圖1,點(diǎn)E在邊BC的延長(zhǎng)線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點(diǎn)E在邊BC的延長(zhǎng)線上,BE=AC,若M是DE的中點(diǎn),連接AM,CM,求證:AM⊥MC;
(3)如圖3,點(diǎn)E在邊BC上,射線AE交射線DC于點(diǎn)F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫(xiě)出結(jié)果)5發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
把好題分享給你的好友吧~~