橢圓C:x2a2+y2b2=1(a>b>0)將圓x2+y2=85的圓周分為四等份,且橢圓C的離心率32.
(1)求橢圓C的方程;
(2)若直線l與橢圓C交于不同的兩點(diǎn)M,N,且MN的中點(diǎn)為P(x0,14),線段MN的垂直平分線為l',直線l'與x軸交于點(diǎn)Q(m,0),求m的取值范圍.
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
x
2
+
y
2
=
8
5
3
2
P
(
x
0
,
1
4
)
【考點(diǎn)】根據(jù)橢圓的幾何特征求標(biāo)準(zhǔn)方程;直線與橢圓的綜合.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/30 16:0:8組卷:43引用:1難度:0.4
相似題
-
1.已知橢圓C:
(a>b>0)的離心率為x2a2+y2b2=1,短軸長(zhǎng)為2.32
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,且線段MN的垂直平分線過(guò)定點(diǎn)(1,0),求實(shí)數(shù)k的取值范圍.發(fā)布:2024/6/27 10:35:59組卷:2180引用:4難度:0.4 -
2.離心率為
,長(zhǎng)軸長(zhǎng)為53且焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程為( ?。?/h2>25發(fā)布:2024/7/3 8:0:9組卷:53引用:2難度:0.7 -
3.已知橢圓C2以橢圓C1:
+y2=1的長(zhǎng)軸為短軸,且與橢圓C1有相同的離心率,那么橢圓C2的標(biāo)準(zhǔn)方程為 .x24發(fā)布:2024/8/6 8:0:9組卷:21引用:1難度:0.5
把好題分享給你的好友吧~~