已知拋物線C:y2=2px經(jīng)過點(2,-26),直線l1:y=kx+m(km≠0)與C交于A,B兩點(異于坐標原點O).
(1)若OA?OB=0,證明:直線l1過定點.
(2)已知k=2,直線l2在直線l1的右側(cè),l1∥l2,l1與l2之間的距離d=5,l2交C于M,N兩點,試問是否存在m,使得|MN|-|AB|=10?若存在,求m的值;若不存在,說明理由.
(
2
,-
2
6
)
OA
?
OB
=
0
d
=
5
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/8 8:0:9組卷:57引用:10難度:0.4
相似題
-
1.已知拋物線:y2=8x,O為坐標原點,過其焦點的直線交拋物線于A,B兩點,滿足|AB|=10,則△OAB的面積為( ?。?/h2>
A. 45B. 46C. 55D. 56發(fā)布:2024/12/12 2:0:2組卷:346引用:5難度:0.5 -
2.如圖,設(shè)拋物線y2=2px的焦點為F,過x軸上一定點D(2,0)作斜率為2的直線l與拋物線相交于A,B兩點,與y軸交于點C,記△BCF的面積為S1,△ACF的面積為S2,若
,則拋物線的標準方程為( ?。?/h2>S1S2=14A.y2=x B.y2=2x C.y2=4x D.y2=8x 發(fā)布:2024/12/17 0:0:2組卷:159引用:6難度:0.6 -
3.拋物線上任意兩點A、B處的切線交于點P,稱△PAB為“阿基米德三角形”.當(dāng)線段AB經(jīng)過拋物線焦點F時,△PAB具有以下特征:
①P點必在拋物線的準線上;②△PAB為直角三角形,且PA⊥PB;③PF⊥AB.
若經(jīng)過拋物線y2=4x焦點的一條弦為AB,阿基米德三角形為△PAB,且點P的縱坐標為4,則直線AB的方程為( ?。?/h2>A.x-2y-1=0 B.2x+y-2=0 C.x+2y-1=0 D.2x-y-2=0 發(fā)布:2024/12/11 9:30:3組卷:207引用:7難度:0.7
把好題分享給你的好友吧~~