閱讀與思考
閱讀下列材料,完成后面的任務(wù):
趙爽“弦圖”與完全平方公式三國時期吳國的數(shù)學(xué)家趙爽創(chuàng)建了一幅“弦圖”,利用面積法給出了勾股定理的證明.實際上,該“弦圖”與完全平方公式有著密切的關(guān)系,如圖2,這是由8個全等的直角邊長分別為a,b,斜邊長為c的三角形拼成的“弦圖”.由圖可知,1個大正方形ABCD的面積=8個直角三角形的面積+1個小正方形PQMN的面積.![]() |
(1)在圖2中,正方形ABCD的面積可表示為
(a+b)2
(a+b)2
,正方形PQMN的面積可表示為 (a-b)2
(a-b)2
.(用含a,b的式子表示)(2)根據(jù)S正方形ABCD=8S直角三角形+S正方形PQMN,可得(a+b)2,ab,(a-b)2之間的關(guān)系為
(a+b)2=4ab+(a-b)2
(a+b)2=4ab+(a-b)2
.(3)根據(jù)(2)中的等量關(guān)系,解決問題:已知a+b=5,ab=4,求(a-b)2的值.
【答案】(a+b)2;(a-b)2;(a+b)2=4ab+(a-b)2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:932引用:5難度:0.6
相似題
-
1.10.《時代數(shù)學(xué)學(xué)習(xí)》雜志2007年3月將改版為《時代學(xué)習(xí)報?數(shù)學(xué)周刊》,其徽標(biāo)是我國古代“弦圖”的變形(見示意圖).該圖可由直角三角形ABC繞點(diǎn)O同向連續(xù)旋轉(zhuǎn)三次(每次旋轉(zhuǎn)90°)而得.因此有“數(shù)學(xué)風(fēng)車”的動感.假設(shè)中間小正方形的面積為1,整個徽標(biāo)(含中間小正方形)的面積為92,AD=2,則徽標(biāo)的外圍周長為( )
發(fā)布:2025/1/25 8:0:2組卷:355引用:2難度:0.6 -
2.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的邊長為( ?。?/h2>
發(fā)布:2024/12/19 23:30:5組卷:1770引用:28難度:0.6 -
3.用四個全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(x>y),給出下列四個結(jié)論正確的是 .(填序號即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發(fā)布:2024/12/23 12:0:2組卷:447引用:3難度:0.6