當(dāng)前位置:
2010-2011學(xué)年江蘇省南通市海門實(shí)驗(yàn)高級(jí)中學(xué)高三(上)模塊學(xué)習(xí)效果調(diào)查數(shù)學(xué)試卷>
試題詳情
已知有窮數(shù)列{an}共有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2,設(shè)該數(shù)列的前n項(xiàng)和為Sn,且Sn=an+1-2a-1(n=1,2,3,…,2k-1),其中常數(shù)a>1.
(1)求{an}的通項(xiàng)公式;
(2)若a=222k-1,數(shù)列{bn}滿足bn=1nlog2(a1a2…an),(n=1,2,3,…,2k),求證:1≤bn≤2;
(3)若(2)中數(shù)列{bn}滿足不等式:|b1-32|+|b2-32|+…+|b2k-1-32|+|b2k-32|≤4,求k的最大值.
a
n
+
1
-
2
a
-
1
2
2
2
k
-
1
1
n
lo
g
2
(
a
1
a
2
…
a
n
)
3
2
|
b
2
-
3
2
|
+
…
+
|
b
2
k
-
1
-
3
2
|
+
|
b
2
k
-
3
2
|
≤
4
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:383引用:7難度:0.5
相似題
-
1.古印度數(shù)學(xué)家婆什伽羅在《麗拉沃蒂》一書中提出如下問(wèn)題:某人給一個(gè)人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問(wèn)一月共施幾何?在這個(gè)問(wèn)題中,以一個(gè)月31天計(jì)算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn.若關(guān)于n的不等式
恒成立,則實(shí)數(shù)t的取值范圍為( ?。?/h2>Sn-62<a2n+1-tan+1A.(-∞,7) B.(-∞,15) C.(-∞,16) D.(-∞,32) 發(fā)布:2024/12/9 14:30:1組卷:52引用:3難度:0.6 -
2.已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足
(a>0,且a≠1),設(shè)y3=18,y6=12.ynlogaxn=2
(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值是多少?
(2)試判斷是否存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,若存在,求出最小的自然數(shù)M,若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/14 8:0:1組卷:11引用:1難度:0.1 -
3.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,
,則使得不等式Sn+1+1=4an(n∈N*)成立的正整數(shù)m的最大值為( ?。?/h2>am+am+1+…+am+k-am+1Sk<2023(k∈N*)A.9 B.10 C.11 D.12 發(fā)布:2024/12/7 11:0:2組卷:203引用:4難度:0.5