已知函數(shù)f(x)=x2a-2lnx(a∈R,a≠0).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)有兩個零點x1,x2(x1<x2),且a=4,證明:x1+x2>4.
f
(
x
)
=
x
2
a
-
2
lnx
(
a
∈
R
,
a
≠
0
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:241引用:4難度:0.7
相似題
-
1.設(shè)
,則( ?。?/h2>a=12,b=ln32,c=π2sin12發(fā)布:2024/12/20 7:0:1組卷:130引用:3難度:0.6 -
2.已知函數(shù)
,對?x1,f(x)=exx-12ax,當(dāng)x1>x2時,恒有x2∈[12,2],則實數(shù)a的取值范圍為( )f(x1)x2>f(x2)x1發(fā)布:2024/12/20 1:30:2組卷:97引用:1難度:0.4 -
3.已知
,則( ?。?/h2>a=log40.4,b=log0.40.2,c=0.40.2發(fā)布:2024/12/20 13:30:1組卷:38引用:2難度:0.7
把好題分享給你的好友吧~~