試卷征集
加入會員
操作視頻

“角谷猜想”最早流傳于美國,不久傳到歐洲,后來日本數學家角谷把它帶到亞洲.該猜想是指對于每一個正整數,如果它是奇數,則對它乘3再加1;如果它是偶數,則對它除以2.如此循環(huán),經過有限步演算,最終都能得到1.若正整數n經過5步演算得到1,則n的取值不可能是( ?。?/h1>

【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:39難度:0.7
相似題
  • 菁優(yōu)網1.如圖所示,在著名的漢諾塔問題中有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數記為f(n),則f(6)=( ?。?/h2>

    發(fā)布:2024/11/14 8:0:1組卷:83引用:3難度:0.7
  • 菁優(yōu)網2.古印度“漢諾塔問題”:一塊黃銅平板上裝著A,B,C三根金銅石細柱,其中細柱A上套著n個大小不等的環(huán)形金盤,大的在下、小的在上.將這些盤子全部轉移到另一根柱子上,移動規(guī)則如下:一次只能將一個金盤從一根柱子轉移到另外一根柱子上,不允許將較大盤子放在較小盤子上面.若A柱上現有3個金盤(如圖),將A柱上的金盤全部移到B柱上,至少需要移動次數為( ?。?/h2>

    發(fā)布:2024/11/14 8:0:1組卷:79難度:0.4
  • 菁優(yōu)網3.如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有n個圓盤,較大的圓盤都在較小的圓盤下面.現把圓盤從起始柱全部移到目標柱上,規(guī)則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個圓盤從任一根柱上移動到另一根柱上為一次移動,若將n個圓盤從起始柱移動到目標柱上最少需要移動的次數記為p(n),則p(4)=( ?。?/h2>

    發(fā)布:2024/11/14 8:0:1組卷:162引用:6難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正