在平面直角坐標(biāo)系xOy中:
①已知點(diǎn)A(3,0),直線l:x=433,動(dòng)點(diǎn)P滿足到點(diǎn)A的距離與到直線l的距離之比32;
②已知點(diǎn)S,T分別在x軸,y軸上運(yùn)動(dòng),且|ST|=3,動(dòng)點(diǎn)P滿OP=23OS+13OT;
③已知圓C的方程為x2+y2=4,直線l為圓C的切線,記點(diǎn)A(3,0),B(-3,0)到直線l的距離分別為d1,d2,動(dòng)點(diǎn)P滿足|PA|=d1,|PB|=d2.
(Ⅰ)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)記(Ⅰ)中動(dòng)點(diǎn)P的軌跡為E,經(jīng)過點(diǎn)D(1,0)的直線l′交E于M,N兩點(diǎn),若線段MN的垂直平分線與y軸相交于點(diǎn)Q,求點(diǎn)Q縱坐標(biāo)的取值范圍.
3
l
:
x
=
4
3
3
3
2
OP
=
2
3
OS
+
1
3
OT
A
(
3
,
0
)
,
B
(
-
3
,
0
)
【考點(diǎn)】直線與圓錐曲線的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:222引用:3難度:0.4
相似題
-
1.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:80引用:1難度:0.9 -
2.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:25引用:5難度:0.7
把好題分享給你的好友吧~~