大數學家高斯在上學讀書時曾經研究過這樣一個問題,1+2+3+…10=?
經過研究,這個問題的一般結論是1+2+3+…+n=12n(n+1),其中n是正整數,現在我們來研究一個類似的問題:1×2+2×3+…+n(n+1)=?
觀察下面三個特殊的等式:
1×2=13×(1×2×3-0×1×2)
2×3=13×(2×3×4-1×2×3)
3×4=13×(3×4×5-2×3×4)
將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=13×3×4×5=20.
讀完這段材料,請你計算:
(1)1×2+2×3+…+100×101;
(2)1×2+2×3+…+n(n+1);
(3)1×2×3+2×3×4+…+n(n+1)(n+2).
1
2
1
3
1
3
1
3
1
3
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:105難度:0.6
把好題分享給你的好友吧~~